Sources of carbonaceous aerosol in the Amazon basin
نویسندگان
چکیده
The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies. In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI) fine (Dp < 2.5 μm) and coarse (2.5 μm < Dp < 10 μm) aerosol particles were sampled from February to June (wet season) and from August to September (dry season) 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 μg m−3 during the wet season and 4.2 μg m−3 during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 μg m−3, respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC); the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m2 g−1 at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF) analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA), and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP) dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas. The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical backCorrespondence to: E. Vignati ([email protected]) ground site. The comparison showed an overestimation of elemental carbon (EC) by the TM5 model during the dry season and OC both during the dry and wet periods. The overestimation was likely due to the overestimation of biomass burning emission inventories and SOA production over tropical areas.
منابع مشابه
Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin
[1] Submicron atmospheric particles in the Amazon Basin were characterized by a high-resolution aerosol mass spectrometer during the wet season of 2008. Patterns in the mass spectra closely resembled those of secondary-organicaerosol (SOA) particles formed in environmental chambers from biogenic precursor gases. In contrast, mass spectral indicators of primary biological aerosol particles (PBAP...
متن کاملSource apportionment of the carbonaceous aerosol in Norway – quantitative estimates based on 14C, thermal-optical and organic tracer analysis
In the present study, source apportionment of the ambient summer and winter time particulate carbonaceous matter (PCM) in aerosol particles (PM1 and PM10) has been conducted for the Norwegian urban and rural background environment. Statistical treatment of data from thermal-optical, 14C and organic tracer analysis using Latin Hypercube Sampling has allowed for quantitative estimates of seven di...
متن کاملSource apportionment of carbonaceous aerosol in southern Sweden
A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C) and levoglucosan were measured. This approach enabled source apportionment of the total c...
متن کاملSource apportionment of the summer time carbonaceous aerosol at Nordic rural background sites
In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm) collected at four Nordic rural background sites [Birkenes (Norway), Hyytiälä (Finland), Vavihill (Sweden), Lille Valby, (Denmark)] during late summer (5 August–2 September 20...
متن کاملTransport of North African dust from the Bodélé depression to the Amazon Basin: a case study
Through long-range transport of dust, the NorthAfrican desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bodélé depression area in southwestern Chad is the main winter dust source, a close link is e...
متن کامل